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Abstract. Given an integer m ⩾ 2 and a sufficiently large q, we apply a variant of
the Maynard–Tao sieve weight to establish the existence of an arithmetic progression
with common difference q for which the m-th least prime in such progression is ≪m q,
which is best possible. As we vary over progressions instead of fixing a particular one,
the nature of our result differs from others in the literature. Furthermore, we generalize
our result to dynamical systems. The quality of the result depends crucially on the first
return time, which we illustrate in the case of Diophantine approximation.

1. Introduction

Analytic Number Theory has witnessed many breakthroughs on fundamental prob-
lems in recent years, in particular the bounded gaps between primes, thanks to Zhang
[Zha14], Maynard [May15] and Tao (see also [Pol14]), building upon the celebrated work
of Goldston–Pintz–Yıldırım [GPY09]. Maynard [May16] further proved that any subset
of primes which is “well distributed” in arithmetic progressions contains many primes
that are close together.
In particular, for primes in a fixed progression, the best known result is due to Baker–

Zhao [BZ16], who proved that givenm ⩾ 1, let x be a sufficiently large real number, q = xθ

a suitably “powerful” modulus, and (a, q) = 1. Then there exist primes p1 < · · · < pm in
(x, 2x] such that pi ≡ a (mod q) for 1 ⩽ i ⩽ m and

pm − p1 ⩽ q exp(cm)

for some constant c = c(θ) > 0.
Apart from progressions, there are also infinitely many bounded gaps between primes

in a fixed “Chebotarev set” [Tho14], “Sato–Tate interval” [Gil+20] or “nil-Bohr set”
[ST21].
To motivate our work, we begin by asking: how big is the first prime in a given

arithmetic progression? Let p(q, a) denote the least prime in the arithmetic progression
a (mod q). Then recall Linnik’s celebrated theorem that p(q, a) ≪ qL for some absolute
constant L > 0. Assuming a uniform variant of the Hardy–Littlewood prime k-tuple
conjecture, the second author [Leu24a] showed that as soon as f(q) → ∞ with q → ∞,
the least prime p(q, a) is ⩽ f(q)φ(q) log q for almost all a (mod q). In fact, the least
prime in arithmetic progressions to a common large modulus has an exponential limiting
distribution. More precisely, if a reduced residue a (mod q) is chosen uniformly at random,
then we have the convergence in distribution

p(q, a)

φ(q) log q

d−→ exp(1) as q → ∞.

Given m ⩾ 1 and (a, q) = 1, we are also interested in the m-th least prime p ≡ a
(mod q), which we denote as pm(q, a). As a (mod q) varies uniformly with q → ∞, the
second author [Leu24b] further showed conditionally that the normalized primes in the
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progression,

p1(q, a)

φ(q) log q
<

p2(q, a)

φ(q) log q
< · · ·

are located on the positive real number line (0,∞) as if they were randomly positioned
points, in the sense of a Poisson point process.
In this paper, applying a variant of the Maynard–Tao sieve weight, we establish the

existence of a residue class a (mod q) for which the first few normalized primes in the
progression form an early cluster, which can be viewed as the progression counterpart to
bounded gaps between primes.

Theorem 1.1. Let m ⩾ 2. Then for any sufficiently large modulus q (in terms of m),
we have

min
a (mod q)

pm(q, a) ≪m q.

Remark 1.1. When m = 2, following the proof in [Pol14], the implied constant can be
taken as 270.

Aside from the dependence onm, the optimality here is clear, whereas by the pigeonhole
principle, one can only show that mina (mod q) pm(q, a) ≪m φ(q) log q. Also, by varying
the progressions instead of fixing a particular one, we are able to obtain a prime cluster
early,1 which makes the nature of our result distinct from the existing literature, including
those discussed in the beginning of the paper.
Furthermore, we generalize our result to dynamical systems, including circle rotations

(Diophantine approximation) and Möbius transformations (see Example 2.2 and Example
2.3 respectively). It turns out that the quality of the result depends crucially on the first
return time, which we explore in Section 7. In particular, in the case of circle rotations
Tα : x 7→ x + α for almost all α or those α with bounded partial quotients, we establish
tighter lower and upper bounds than those in the literature for the first return time (see
Proposition 7.1).
Recurrence is a central theme in ergodic theory, i.e. how points in dynamical systems

return close to themselves under iteration. In 1890, Poincaré proved a simple yet far-
reaching recurrence theorem in the context of the “three-body” problem of planetary
orbits (see [EW11, p. 21]). For our purposes, here we state a simple version (see [EW11,
Exercise 2.2.1] for instance).

Lemma 1.1 (Poincaré recurrence theorem). Given a measure-preserving system (X,B, µ, T ),
let A ∈ B with µ(A) > 0. Then there exists an integer 1 ⩽ n ⩽ µ(A)−1 such that

µ(A ∩ T−nA) > 0.

This is essentially the pigeonhole principle. A famous example is Dirichlet’s approxi-
mation theorem, corresponding to circle rotation. Inspired by the recurrence theorem, we
shall visit early at prime times in metric-measure-preserving systems defined as follows.

Definition 1.1 (Metric-measure-preserving system). A metric-measure-preserving sys-
tem is a quintuple (X, d,B, µ, T ) where (X, d) is a metric space and (X,B, µ, T ) is a
measure-preserving system satisfying the following compatibility conditions:

• the Borel σ-algebra B is induced by the metric d;

1See [Pom80] and a recent improvement [LPS17] for a lower bound for the least prime in a progression
instead.
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• the probability measure µ is pseudo-doubling, i.e. given a sufficiently small ϵ > 0,
there exists λ ⩾ 1 such that

µ(B(x; 2ϵ)) ⩽ λ · µ(B(x; ϵ))

for any x ∈ X, where B(x; ϵ) := {y ∈ X : d(y, x) < ϵ};
• the measure-preserving map T is an isometry.2

Let pTm(x0, x; ϵ) denote the m-th least prime p for which T px0 ∈ B(x; ϵ). Then, with
the definition in hand, we state the dynamical generalization of Theorem 1.1.

Theorem 1.2. Let m ⩾ 2 and (X, d,B, µ, T ) be a metric-measure-preserving system.
Then for any sufficiently small ϵ > 0 (in terms of m) and x0 ∈ X, we have

min
x∈X

pTm(x0, x; ϵ) ≪m,λ µ(B(x0; ϵ))
−1.

Notation. Throughout the paper, we use the standard big O and little o notations as
well as the Vinogradov notations ≪,≫ and the Hardy notation ≍, where the implied
constants depend only on the subscripted parameters.

2. Main results

We begin by stating the quantitative version of Theorem 1.1, which provides a lower
bound for the number of residue classes with early prime clusters.

Theorem 2.1. Let m ⩾ 2. Then for any sufficiently large modulus q (in terms of m),
there exist absolute constants C,C ′ > 0 such that

#{a (mod q) : pm(q, a) ⩽ Cqm exp(4m)} ≫m φ(q)(log q)−C′ exp(4m).

Remark 2.1. Unsurprisingly, the constant 4 here can be reduced to 2 if one assumes the
Elliott–Halberstam conjecture [EH70]. See [Pol14] and [Sta23] for potential unconditional
improvements.

We also state the quantitative version of Theorem 1.2, which is the dynamical gener-
alization of Theorem 2.1.

Theorem 2.2. Let m ⩾ 2 and (X, d,B, µ, T ) be a metric-measure-preserving system.
Then there exists constants C = C(λ), C ′ = C ′(λ) > 0 such that for any x0 ∈ X and
sufficiently small ϵ > 0 (in terms of m), we have

µ({x ∈ X : pTm(x0, x; ϵ) ⩽ Cqm exp(4m)})
≫m,λ φ(q)(1 + log q)−C′ exp(4m)µ(B(x0; ϵ))

for some integer 1 ⩽ q ⩽ mlog2 λ exp(4m log2 λ)µ(B(x0; ϵ))
−1.3

To illustrate our theorem, we provide several examples.

Example 2.1 (Right shift). Consider the metric-measure-preserving system with X =
Z/qZ, d = discrete metric, µ = normalized counting measure and Tq : a 7→ a+1 (mod q).
Since the m-th least prime pm(q, a) ≫m q, we recover Theorem 2.1.

2In fact, for our purposes, it suffices to assume that T is non-expanding, i.e. d(Tx, Ty) ⩽ d(x, y) for
any x, y ∈ X. In particular, both Theorem 1.2 and Theorem 2.2 hold for such T.

3See Section 7 for further discussion on the size of q, which depends crucially on the first return time.
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Example 2.2 (Circle rotation). Consider the metric-measure-preserving system with
X = [0, 1], d = ∥ · ∥, µ = Lebesgue measure and Tα : x 7→ x + α (mod 1), where ∥ · ∥
is the distance to the nearest integer function and α ∈ [0, 1]. Let m ⩾ 2. Then for any
sufficiently small ϵ > 0 (depending on m), there exists β ∈ [0, 1] such that

pαm(β; ϵ) ≪ ϵ−1m2 exp(8m)

as ϵ → 0+, where pαm(β; ϵ) denotes the m-th least prime p for which ∥pα − β∥ < ϵ. See
Corollary 7.1 for the quantitative version.

Example 2.3 (Möbius transformation). Consider the metric-measure-preserving system
with X = SL2(Z)\H, d = dhyp, µ = hyperbolic measure and Tg : z 7→ gz (mod SL2(Z)),
where dhyp is the hyperbolic distance and g ∈ SL2(R). Let m ⩾ 2. Then for any sufficiently
small ϵ > 0 (depending on m), there exists τ ∈ SL2(Z)\H such that

pgm(τ ; ϵ) ≪ ϵ−2m3 exp(12m)

as ϵ→ 0+, where pgm(τ ; ϵ) denotes the m-th least prime p for which dhyp(g
p(i), τ) < ϵ.

3. A variant of Maynard–Tao sieve weight

Following the style of [Pol14], we shall provide an outline of the proof of Theorem
2.1. Similar to the proof of [May16, Theorem 3.1], let m ⩾ 2 and an admissible k-tuple
(h1, . . . , hk) depending on m, i.e. a tuple of k non-negative integers h1 < · · · < hk
satisfying #{hi (mod p) : 1 ⩽ i ⩽ k} < p for any prime p. Then, we would like to
construct a weight wa (with size depending on the number of prime factors) over the
reduced residue system {1 ⩽ a ⩽ q : (a, q) = 1} for any q = q(m) sufficiently large, so
that

S :=

q∑
a=1

(a,q)=1

(
k∑

i=1

1P(a+ qhi)− (m− 1)− k
k∑

i=1

∑
p|a+qhi
p⩽qρ

1

)
wa (3.1)

is positively large for some small ρ = ρ(k) > 0. By the pigeonhole principle, there exists
a reduced residue a (mod q) such that the expression in the parenthesis is positive, in
which case at least m of the a + qhi are primes and none of them have primes factors
p ⩽ qρ, so that wa is bounded in terms of the number of prime factors Ω(a+ qhi) ⩽ ρ−1

for 1 ⩽ i ⩽ k. Since the expression in the parenthesis is bounded by k from above, the
expression (3.1) gives

#{a (mod q) : at least m of the a+ qhi are primes} ⩾

(
k max
a (mod q)

wa

)−1

S. (3.2)

To construct our weight wa, let w := log log log q and Wq :=
∏

p⩽w
p∤q

p. By the ad-

missibility of the k-tuple (h1, . . . , hk), we can choose b0 (mod Wq) so that for those
a ≡ b0 (mod Wq), we have a + qhi ≡ b0 + qhi ̸≡ 0 (mod p) for any prime p ⩽ w, p ∤ q.
Then, analogous to the Maynard–Tao sieve weight (see [Pol14, p.11]), ours is

wa := 1a≡b0 (mod Wq)

(∑
· · ·
∑

di|a+qhi
i=1,...,k

k∏
i=1

µ(di)× F

(
log d1
log q

, · · · , log dk
log q

))2

for some function F : [0,∞)k → R such that its mixed derivative ∂t1···tkF is square-
integrable and is supported on the simplex

∆k(θ; ϵ) := {(t1, . . . , tk) ∈ [0,∞)k : t1 + · · ·+ tk ⩽ (θ − ϵ)/2},



VISITING EARLY AT PRIME TIMES 5

where θ > 0 being the “level of distribution” of primes, and ϵ = ϵ(k) = 1
log k

> 0 say.

Thanks to the Bombieri–Vinogradov theorem, throughout the paper, we can simply take
θ = 1/2 unconditionally (or θ = 1 under the Elliott–Halberstam conjecture). For future
reference, the family of such functions is denoted as Fk,θ.
With our choice of weight wa, it turns out that not only is the sum S in (3.1) com-

putable, but it is also positively large.
To simplify notation, given a square-integrable function G : [0,∞)k → R, let us denote

the singular integrals

I(G) :=

∫
[0,∞)k

G(t1, . . . , tk)
2dt1 · · · dtk

and

Ji(G) :=

∫
[0,∞)k−1

(∫
[0,∞)

G(t1, . . . , tk)dti

)2

dt1 · · · dti−1dti+1 · · · dtk

for 1 ⩽ i ⩽ k. Then in view of (3.1), we are required to estimate the following sums.

Proposition 3.1 (Non-prime sum). Let q be sufficiently large in terms of k. Then
q∑

a=1
(a,q)=1

wa = (I(∂t1···tkF ) + o(1))
φ(q)

Wq

(
φ(Wq)

Wq

× φ(q)

q
× log q

)−k

.

Proposition 3.2 (Prime sum). Let 1 ⩽ i0 ⩽ k and q be sufficiently large in terms of k.
Then

q∑
a=1

(a,q)=1

1P(a+ qhi0)wa = (Ji0(∂t1···tkF ) + o(1))
φ(q)

Wq

(
φ(Wq)

Wq

× φ(q)

q
× log q

)−k

.

Proposition 3.3 (Small prime factor sum). Let 0 < ρ ⩽ 1
100k

and q be sufficiently large
in terms of k. Then

q∑
a=1

(a,q)=1

( ∑
p|a+qhi0
p⩽qρ

1

)
wa ⩽ C1ρ×

φ(q)

Wq

(
φ(Wq)

Wq

× φ(q)

q
× log q

)−k

for some absolute constant C1 > 0.

4. Proof of Theorem 2.1

In this section, we shall prove Theorem 2.1 assuming the aforementioned propositions.
Combining Propositions 3.1, 3.2 and 3.3, the expression (3.1) gives

S ⩾

(
k∑

i=1

Ji(∂t1···tkF )− (m− 1)I(∂t1···tkF )− C1k
2ρ− o(1)

)

×φ(q)
Wq

(
φ(Wq)

Wq

× φ(q)

q
× log q

)−k

. (4.1)

Applying [Pol14, Theorem 3.9] followed by suitable rescaling, the ratio of the singular
series is

sup
G∈F

∑k
i=1 Ji(∂t1···tkG)

I(∂t1···tkG)
⩾

∑k
i=1 Ji(∂t1···tkF )

I(∂t1···tkF )
⩾
θ

2
log k − C2
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for some absolute constant C2 > 0 and function F such that its mixed derivative

∂t1···tkF (t1, . . . , tk) = 1∆k(θ;ϵ)(t1, . . . , tk)
k∏

i=1

ψ(ti),

where ψ(t) := 1
c+(k−1)t

with c = 1
log k

− 1
log2 k

(see [Pol14, Theorem 6.7]). Given such a

choice of function F , since by definition

I(∂t1···tkF ) =

∫
∆k(θ;ϵ)

(
k∏

i=1

ψ(ti)

)2

dt1 · · · dtk ≫
(
log k

k

)k

,

it follows from (4.1) that

S ⩾

((
θ

2
log k − C2 − (m− 1)

)
I(∂t1···tkF )− C1k

2ρ− o(1)

)
×φ(q)
Wq

(
φ(Wq)

Wq

× φ(q)

q
× log q

)−k

≫ φ(q)

Wq

(
φ(Wq)

Wq

× φ(q)

q
× log q

)−k (
log k

k

)k

(4.2)

by taking k = ⌈exp
(
2
θ
(m+ C2)

)
⌉ and ρ = k−k.

On the other hand, since g(t) ⩽ min{1
c
, 1
(k−1)t

}, we have

max
a (mod q)

wa ≪(k − 1)−2k(log q)2k

 k∏
i=1

∑
di|a+qhi

1

2

=(k − 1)−2k(log q)2k
k∏

i=1

∏
p|a+qhi

4.

Since Ω(a+ qhi) ⩽ ρ−1 for 1 ⩽ i ⩽ k as discussed earlier, this is

⩽ (log q)2k exp(C3k/ρ) (4.3)

for some absolute constant C3 > 0.
Therefore, combining (4.2) and (4.3), it follows from (3.2) that

#{a (mod q) : at least m of the a+ qhi are primes}

≫k
φ(q)

(log q)3k
× 1

Wq

(
φ(Wq)

Wq

× φ(q)

q

)−k

≫k,η
φ(q)

(log q)(3+η)k
.

Finally, let (h1, · · · , hk) be the narrowest admissible k-tuple with h1 = 0. Then hk ≪
k log k by [Pol14, Theorem 3.3], so that pm(q, a) ⩽ a + qhk ≪ qk log k and the proof is
completed.

5. Proof of Propositions 3.1, 3.2 & 3.3

We follow the treatment in [Pol14]. Without loss of generality, by the Stone–Weierstrass
theorem, we may assume F is a linear combination of tensor products, i.e. there are
constants cj ∈ R and fi,j ∈ C∞

c ([0,∞)) for 1 ⩽ i ⩽ k and 1 ⩽ j ⩽ J such that

F (t1, . . . , tk) =
J∑

j=1

cj

k∏
i=1

fi,j(ti)



VISITING EARLY AT PRIME TIMES 7

(see [Pol14, Section 5.1] for details). Also, let us denote

λf (n) :=
∑
d|n

µ(d)f

(
log d

log q

)
.

Then our weight becomes

wa = 1a≡b0 (mod Wq)

(
J∑

j=1

cj

k∏
i=1

λfi,j(a+ qhi)

)2

= 1a≡b0 (mod Wq)

J∑
j=1

J∑
j′=1

cjcj′
k∏

i=1

λfi,j(a+ qhj)λfi,j′ (a+ qhj′).

Before embarking the proof of the propositions, we first show that reduced residues are
well-distributed in progressions.

Lemma 5.1 (Level of distribution of reduced residues). Let ϵ ∈ (0, 1/2). Then as q → ∞,
we have ∑

r⩽q1−2ϵ

(r,q)=1

max
c (mod r)

∣∣∣∣∣
q∑

a=1

1(a,q)=1

(
1a≡c (mod r) −

1

r

)∣∣∣∣∣≪ϵ q
1−ϵ.

Proof. By Möbius inversion, we have

q∑
a=1

1(a,q)=11a≡c (mod r) =
∑
d|q

µ(d)

q∑
a=1
d|a

1a≡c (mod r). (5.1)

Since (r, q) = 1 and d | q, the Chinese remainder theorem gives

q∑
a=1
d|a

1a≡c (mod r) =
q

rd
+O(1),

so that (5.1) is

q

r

∑
d|q

µ(d)

d
+O(τ(q)) =

φ(q)

r
+O(τ(q)).

Therefore, we have∑
r⩽q1−2ϵ

(r,q)=1

max
c (mod r)

∣∣∣∣∣
q∑

a=1

1(a,q)=1

(
1a≡c (mod r) −

1

r

)∣∣∣∣∣≪ q1−2ϵτ(q)

≪ϵ q
1−ϵ,

and the lemma follows. □

Proof of Proposition 3.1. By linearity, it suffices to estimate

q∑
a=1

(a,q)=1

1a≡b0 (mod Wq)

k∏
i=1

λfi(a+ qhi)λgi(a+ qhi) (5.2)
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for all fi, gi ∈ C∞
c ([0,∞)) with 1 ⩽ i ⩽ k. Then, after interchanging the order of summa-

tion, this becomes∑
· · ·
∑

d1,d′1...,dk,d
′
k⩾1

(
k∏

i=1

µ(di)µ(d
′
i)fi

(
log di
log q

)
gi

(
log d′i
log q

))
S(d,d′),

where d := (d1, . . . , dk),d
′ := (d′1, . . . , d

′
k) and

S(d,d′) :=

q∑
a=1

[di,d
′
i] | a+qhi,1⩽i⩽k

a≡b0 (mod Wq)

1(a,q)=1.

Since by assumption |hi−hj| < w and (a+qhi,Wq) = 1, the sum S(d,d′) vanishes unless

q,Wq, [d1, d
′
1], . . . , [dk, d

′
k] are pairwise coprime. Let rWq ,d,d′ := Wq

∏k
i=1[di, d

′
i]. Then, it

follows from the Chinese remainder theorem that there exists a unique reduced residue
c0 (mod rWq ,d,d′) such that

S(d,d′) =
φ(q)

rWq ,d,d′
+

q∑
a=1

1(a,q)=1

(
1a≡c0 (mod rWq,d,d′ )

− 1

rWq ,d,d′

)
.

Therefore, the main term of (5.2) is

φ(q)

Wq

∑
· · ·
∑

d1,d′1...,dk,d
′
k⩾1

q,Wq ,[di,d
′
i] pairwise coprime

k∏
i=1

µ(di)µ(d
′
i)

[di, d′i]
fi

(
log di
log q

)
gi

(
log d′i
log q

)
,

which is also

φ(q)

Wq

∑
· · ·
∑

d1,d′1...,dk,d
′
k⩾1

qW ,W,[di,d
′
i] pairwise coprime

k∏
i=1

µ(di)µ(d
′
i)

[di, d′i]
fi

(
log di
log q

)
gi

(
log d′i
log q

)
,

where qW := q/(q,W ). Then, applying [Pol14, Lemma 4.1], this becomes

(I(f , g) + o(1))
φ(q)

Wq

(
φ(W )

W
× φ(qW )

qW
× log q

)−k

=(I(f , g) + o(1))
φ(q)

Wq

(
φ(Wq)

Wq

× φ(q)

q
× log q

)−k

,

where f := (f1, . . . , fk), g := (g1, . . . , gk) and

I(f , g) :=
k∏

i=1

∫ ∞

0

f ′
i(ti)g

′
i(ti)dti.

On the other hand, note that for any r ⩾ 1 with (r, q) = 1 we have

#{(d,d′) : r = rWq ,d,d′} ⩽ τ3k(r),

and the product
∏k

i=1 fi

(
log di
log q

)
gi

(
log d′i
log q

)
vanishes unless

rWq ,d,d′ ⩽ Wq × q

(∑k
i=1

log di
log q

+
∑k

i′=1

log d′i
log q

)

⩽ q
1
2
−ϵ.
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Therefore, the error term of (5.2) is

⩽
∑

r⩽q1/2−ϵ

(r,q)=1

τ3k(r) max
(c,r)=1

∣∣∣∣∣
q∑

a=1

1(a,q)=1

(
1a≡c (mod r) −

1

r

)∣∣∣∣∣ . (5.3)

Since

max
(c,r)=1

∣∣∣∣∣
q∑

a=1

1(a,q)=1

(
1a≡c (mod r) −

1

r

)∣∣∣∣∣≪ q

r
,

it follows from the Cauchy–Schwarz inequality that (5.3) is

≪ q
1
2

∑
r⩽q1/2−ϵ

(r,q)=1

τ3k(r)

r1/2
max
(c,r)=1

(∣∣∣∣∣
q∑

a=1

1(a,q)=1

(
1a≡c (mod r) −

1

r

)∣∣∣∣∣
)1/2

≪ q
1
2

 ∑
r⩽q1/2−ϵ

τ 23k(r)

r

1/2
 ∑

r⩽q1/2−ϵ

(r,q)=1

max
(c,r)=1

∣∣∣∣∣
q∑

a=1

1(a,q)=1

(
1a≡c (mod r) −

1

r

)∣∣∣∣∣


1/2

≪k q
1
2 (log q)

9k2

2

 ∑
r⩽q1/2−ϵ

(r,q)=1

max
(c,r)=1

∣∣∣∣∣
q∑

a=1

1(a,q)=1

(
1a≡c (mod r) −

1

r

)∣∣∣∣∣


1/2

.

Applying Lemma 5.1, this is ≪k q
7/8, and thus the proposition follows. □

Proof of Proposition 3.2. Similarly, it suffices to estimate

q∑
a=1

(a,q)=1

1P(a+ qhk)1a≡b0 (mod Wq)

k−1∏
i=1

λfi(a+ qhi)λgi(a+ qhi). (5.4)

Then, after interchanging the order of summation, this becomes∑
· · ·
∑

d1,d′1...,dk,d
′
k⩾1

(
k∏

i=1

µ(di)µ(d
′
i)fi

(
log di
log q

)
gi

(
log d′i
log q

))
S̃(d,d′),

where

S̃(d,d′) :=

q∑
a=1

[di,d
′
i] | a+qhi,1⩽i⩽k

a≡b0 (mod Wq)

1P(a+ qhk).

Arguing as before, there exists a unique reduced residue c0 (mod rWq ,d,d′) such that

S̃(d,d′) =
1

φ(rWq ,d,d′)

q∑
a=1

1P(a+ qhk)

+

q∑
a=1

1P(a+ qhk)

(
1a≡c0 (mod rWq,d,d′ )

− 1

φ(rWq ,d,d′)

)
.
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Therefore, by the prime number theorem, the main term of (5.4) is

(1 + o(1))q

φ(Wq) log q

∑
· · ·
∑

d1,d′1...,dk,d
′
k⩾1

q,Wq ,[di,d
′
i] pairwise coprime

k−1∏
i=1

µ(di)µ(d
′
i)

φ([di, d′i])
fi

(
log di
log q

)
gi

(
log d′i
log q

)
,

which is also

(1 + o(1))q

φ(Wq) log q

∑
· · ·
∑

d1,d′1...,dk,d
′
k⩾1

qW ,W,[di,d
′
i] pairwise coprime

k−1∏
i=1

µ(di)µ(d
′
i)

φ([di, d′i])
fi

(
log di
log q

)
gi

(
log d′i
log q

)
,

where recall that qW = q/(q,W ). Then, applying [Pol14, Lemma 4.1], this becomes

(Jk(f , g) + o(1))
q

φ(Wq) log q

(
φ(W )

W
× φ(qW )

qW
× log q

)−(k−1)

=(Jk(f , g) + o(1))
q

φ(Wq) log q

(
φ(Wq)

Wq

× φ(q)

q
× log q

)−(k−1)

,

where

Jk(f , g) :=
k−1∏
i=1

∫ ∞

0

f ′
i(ti)g

′
i(ti)dti.

On the other hand, note that for any r ⩾ 1 with (r, q) = 1 we have

#{(d,d′) : r = rWq ,d,d′} ⩽ τ3k−3(r),

and the product
∏k−1

i=1 fi

(
log di
log q

)
gi

(
log d′i
log q

)
vanishes unless

rWq ,d,d′ ⩽ Wq × q

(∑k−1
i=1

log di
log q

+
∑k−1

i′=1

log d′i
log q

)

⩽ q
1
2
−ϵ.

Therefore, the error term of (5.4) is

⩽
∑

r⩽q1/2−ϵ

(r,q)=1

τ3k−3(r) max
(c,r)=1

∣∣∣∣∣
q∑

a=1

1P(a+ qhk)

(
1a≡c (mod r) −

1

φ(r)

)∣∣∣∣∣ . (5.5)

Since

max
(c,r)=1

∣∣∣∣∣
q∑

a=1

1P(a+ qhk)

(
1a≡c (mod r) −

1

φ(r)

)∣∣∣∣∣≪ q

φ(r)
,
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it follows from the Cauchy–Schwarz inequality that (5.5) is

≪ q
1
2

∑
r⩽q1/2−ϵ

(r,q)=1

τ3k−3(r)

φ(r)1/2
max
(c,r)=1

(∣∣∣∣∣
q∑

a=1

1P(a+ qhk)

(
1a≡c (mod r) −

1

φ(r)

)∣∣∣∣∣
)1/2

≪ q
1
2

 ∑
r⩽q1/2−ϵ

τ 23k−3(r)

φ(r)

1/2
 ∑

r⩽q1/2−ϵ

(r,q)=1

max
(c,r)=1

∣∣∣∣∣
q∑

a=1

1P(a+ qhk)

(
1a≡c (mod r) −

1

φ(r)

)∣∣∣∣∣


1/2

≪k q
1
2 (log q)

9(k−1)2

2

 ∑
r⩽q1/2−ϵ

(r,q)=1

max
(c,r)=1

∣∣∣∣∣
q∑

a=1

1P(a+ qhk)

(
1a≡c (mod r) −

1

φ(r)

)∣∣∣∣∣


1/2

,

which is ≪k q(log q)
−100k2 by the Bombieri–Vinogradov theorem. Therefore, the propo-

sition follows. □

Proof of Proposition 3.3. Similarly, it suffices to estimate

q∑
a=1

(a,q)=1

( ∑
p|a+qhk
p⩽qρ

1

)
1a≡b0 (mod Wq)

k∏
i=1

λfi(a+ qhi)λgi(a+ qhi). (5.6)

Adapting the proof of [Pol14, Proposition 4.2], one can show that

q∑
a=1

(a,q)=1

1p|a+qhk
1a≡b0 (mod Wq)

k∏
i=1

λfi(a+ qhi)λgi(a+ qhi)

≪ log p

p log q
× φ(q)

Wq

(
φ(Wq)

Wq

× φ(q)

q
× log q

)−k

.

Then, by summing over primes p, the expression (5.6) is

≪ ρ× φ(q)

Wq

(
φ(Wq)

Wq

× φ(q)

q
× log q

)−k

,

and the proposition follows. □

6. Proof of Theorem 2.2

Let h := Cm exp(4m), where C > 0 is the absolute constant in Theorem 2.1. Then
using Lemma 1.1 followed by the triangle inequality, there exists the least integer 1 ⩽
q ⩽ µ(B(x0; ϵ/4h))

−1 such that

d(T qx0, x0) <
ϵ

2h
.

Let A := {1 ⩽ a ⩽ q : pm(q, a) ⩽ qh, (a, q) = 1} and XA :=
⋃

a∈AB(T ax0; ϵ/4h).
Note that XA is in fact a disjoint union by the minimality of q. Then, for any 1 ⩽ i ⩽
m, a (mod q) ∈ A and x ∈ XA, we have

d(T pi(q,a)x0, x) ⩽d(T
pi(q,a)x0, T

ax0) + d(T ax0, x)

<d(T pi(q,a)x0, T
ax0) +

ϵ

4h
. (6.1)
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Since T is an isometry, we have

d(T pi(q,a)x0, T
ax0) = d(T pi(q,a)−ax0, x0)

⩽
∑

1⩽j⩽
pi(q,a)−a

q

d(T jqx0, T
(j−1)qx0)

=
pi(q, a)− a

q
× d(T qx0, x0)

<
ϵ

2
.

Then, it follows from (6.1) that d(T pi(q,a)x0, x) < ϵ, and thus pTm(x0, x; ϵ) ⩽ qh.
On the other hand, since T−a(B(T ax0; ϵ/4h)) = B(x0; ϵ/4h) and T is measure-preserving,

we have µ(B(T ax0; ϵ/4h)) = µ(B(x0; ϵ/4h)), which implies that

µ(XA) = #A× µ(B(x0; ϵ/4h))

≫m φ(q)(1 + log q)−C′ exp(4m) × µ(B(x0; ϵ/4h))

by Theorem 2.1. Then the theorem follows from the pseudo-doubling property of the
probability measure µ.

7. First return time

Given any ϵ > 0, x0 ∈ X and x ∈ B(x0; ϵ), let τx0;ϵ(x) := min{n ⩾ 1 : T nx ∈ B(x0; ϵ)}
denote the first return time. For instance, the least integer q ⩾ 1 for which d(T qx0, x0) <
ϵ/2h in the last proof is the first return time τx0;ϵ/2h(x0). Suppose the measure-preserving
map T is ergodic. Then Kac’s lemma [Kac47] states that

1

µ(B(x0; ϵ/2h))

∫
X

τx0;ϵ/2h(x)dµ(x) = µ(B(x0; ϵ/2h))
−1,

i.e. the expected return time is µ(B(x0, ϵ/2h))
−1. Therefore, given a “typical” measure-

preserving map T, one should at least expect that

µ(B(x0; ϵ/2h))
−1(log µ(B(x0; ϵ/2h))

−1)−100 ≪ τx0;ϵ/2h(x) ≪ µ(B(x0; ϵ/2h))
−1 (7.1)

for some x ∈ B(x0; ϵ/2h). In fact, this is indeed true provided that the map T is sufficiently
mixing, so that the first return time follows the exponential distribution (see [GS97],
[HSV99], [Sau09] and [Hay13] for details).
Suppose now (7.1) holds. Let q′ := τx0;ϵ/2h(x). Then by following the last proof with

additional triangle inequalities, one can show that

µ({x ∈ X : pTm(x0, x; ϵ) ⩽ Cµ(B(x0; ϵ))
−1mlog2(2λ) exp(4 log2(2λ)m)})

≫m,λ φ(q
′)(1 + log q′)−C′ exp(4m)µ(B(x0; ϵ))

≫m,λ (log µ(B(x0; ϵ))
−1)−C′′ exp(4m)

for some absolute constant C ′′ > 0.
Unfortunately, none of the circle rotations are even weakly mixing (see [EW11, p. 51]

for instance). In fact, one can verify that the assumption (7.1) fails for those circle
rotations Tα : x 7→ x+ α with α of type ηα > 1,4 where

ηα := sup{θ > 0 : lim inf
n→∞

nθ∥nα∥ = 0}.

4By the Borel–Cantelli lemma, the set of irrationals α of type ηα > 1 has Lebesgue measure 0.



VISITING EARLY AT PRIME TIMES 13

More precisely, let τϵ(α) := min{n ⩾ 1 : ∥nα∥ < ϵ}. Then Choe–Seo [CS01] proved that

lim inf
ϵ→0+

log τϵ(α)

log ϵ−1
= η−1

α .

Nevertheless, we are able to establish tight lower and upper bounds for the first return
time for most α ∈ (0, 1) of type ηα ⩽ 1, thereby strengthening [KS03, Theorem 3].

Proposition 7.1. Let α ∈ (0, 1), δ > 0 and ϵ > 0 sufficiently small (in terms of α).
Then

(1) for almost all α ∈ (0, 1) with respect to the Lebesgue measure, we have

ϵ−1(log ϵ−1)−2(1+δ) ≪δ τϵ(α) ≪ ϵ−1;

(2) the irrational α ∈ (0, 1) has bounded partial quotients5 if and only if

τϵ(α) ≍α ϵ
−1.

In particular, the equation (7.1) holds, allowing us to derive the following (metric)
Diophantine approximation result on early visits at prime times.

Corollary 7.1. Let m ⩾ 2 and α ∈ (0, 1). Then for any sufficiently small ϵ > 0 (in
terms of m,α), there exist absolute constants C,C ′ > 0 such that

(1) for almost all α ∈ (0, 1) with respect to the Lebesgue measure µ, we have

µ({β ∈ [0, 1] : pαm(β; ϵ) ⩽ Cϵ−1m2 exp(8m)}) ≫m (log ϵ−1)−C′ exp(4m);

(2) for α ∈ (0, 1) with bounded partial quotients, we also have

µ({β ∈ [0, 1] : pαm(β; ϵ) ⩽ Cϵ−1m2 exp(8m)}) ≫m,α (log ϵ−1)−C′ exp(4m).

Proof of Proposition 7.1. We begin with the proof of the first part. The upper bound is
an immediate consequence of the Dirichlet approximation theorem. For the lower bound,
since the infinite series

∑∞
q=1

1
s(log s)1+δ converges, a standard application of the Borel–

Cantelli lemma yields for almost all (irrational) α ∈ [0, 1], there are only finitely many
pairs of positive integers (r1, s1), . . . , (rk, sk) satisfying∣∣∣∣α− ri

si

∣∣∣∣ ⩽ 1

s2i (log si)
1+δ

for i = 1, . . . , k, and we denote sα := maxi=1,...,k si. For each of these irrational α, let
p1/q1, p2/q2, . . . with q1 < q2 < · · · be the convergents of the continued fraction for α and
qα := min{qn : qn > sα}. Suppose 0 < ϵ < 1

qα(log qα)1+δ . Then there exists qn ⩾ qα such

that
1

qn+1(log qn+1)1+δ
⩽ ϵ <

1

qn(log qn)1+δ
. (7.2)

Through our construction, we have∣∣∣∣α− pn
qn

∣∣∣∣ > 1

q2n(log qn)
1+δ

>
ϵ

qn
. (7.3)

Therefore, it follows from the best rational approximation property of convergents (see
[EW11, Proposition 3.3] for instance) that

τϵ(α) > qn.

5An irrational α with continued fraction expansion [a0; a1, a2, . . .] is said to have bounded partial
quotients if an is uniformly bounded for n ⩾ 1. They are badly approximable by rationals, and vice
versa, i.e. there exists a constant c > 0 such that |α− p

q | >
c
q2 for all p

q ∈ Q. For instance, this includes

quadratic irrationals but excludes the base of the natural logarithm, e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ].
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It remains to give a lower bound for qn. Since∣∣∣∣α− pn
qn

∣∣∣∣ ⩽ 1

qnqn+1

(see [EW11, p. 72] for instance), combining with (7.3) gives

1

qnqn+1

>
1

q2n(log qn)
1+δ

>
ϵ

qn
,

which implies qn+1 < qn(log qn)
1+δ < qn(log qn+1)

1+δ and qn < qn+1 < ϵ−1. Also, we have
qn+1(log qn+1)

1+δ ⩾ ϵ−1 by (7.2), so that

qn >
qn+1

(log qn)1+δ
=
qn+1(log qn)

1+δ

(log qn)2(1+δ)
> ϵ−1(log ϵ−1)−2(1+δ).

Therefore, the first part of the proposition follows.
To prove the “if” part of (2), one can simply adapt the above argument with (7.2) and

(7.3) replaced by

1

qn+3

⩽ ϵ <
1

qn+2

and ∣∣∣∣α− pn
qn

∣∣∣∣ > 1

qnqn+2

>
ϵ

qn

respectively. Then one can show that qn ⩾ (A+ 1)−3ϵ−1, where A := maxn⩾1 an.
It remains to prove the “only if” part of (2). Let α ∈ (0, 1) be an irrational number

with unbounded partial quotients and denote qnk
:= min{qn : qn+1 > kqn} for k ⩾ 1.

Note that such qnk
always exists. Take ϵk := q−1

nk+1
for k ⩾ 1. Then by definition

τϵk(α) ⩽ qnk
<
qnk+1

k
=
ϵ−1
k

k
.

Therefore, it is impossible that τϵ(α) ≫α ϵ
−1 as ϵ→ 0+, and the proof is completed. □
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